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Abstract

A 3D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is
introduced to solve the 3D Schrödinger equation with a tensor effective mass. In this solver, the influence of the environ-
ment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact
regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave
function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying
the problem in comparison with conventional open boundary conditions. The spectral element method leads to an expo-
nentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be
designed such that less than �100 dB outgoing waves are reflected by this artificial material. The computational efficiency
of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave
examples and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical solution of Schrödinger equation has become increasingly important because of the increasing
demand for design optimization of nanodevices where quantum effects are significant. Various numerical
methods have been developed for this purpose, for examples, [1]. These numerical methods have been devel-
oped for one, two and three dimensions. It has been noted that some quantum effects can only be explained if a
three-dimensional model is used [2]. 3D numerical solutions of Schrödinger equation and self-consistent
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Schrödinger–Poisson system have attracted much attention recently (see for examples, [2–7]). The objective of
this work is to develop an alternative 3D numerical method that can effectively account for open boundaries in
Schrödinger equation.

In nanoelectronic devices, states carrying current are important in considering current flowing through a
device region [8]. The calculation of these states are, however, complicated by the influence of the external
environment. The most popular numerical method to calculate these states is to apply an open boundary con-
dition to replace the influence of the environment. This boundary condition enables the electron to transmit
out of the devices without any reflection from the environment.

Several open boundary conditions have been previously proposed [8–10]. The easiest way is to apply an
infinite barrier at the boundary, i.e. enforcing the total wave function to be zero [9]. However, this method
does not enforce the reflected wave to be zero at the boundary, thus is not a true open boundary condition.
In a more accurate quantum transmitting boundary method (QTBM) [8,10], the contact region along the exte-
rior environment is replaced by outgoing waveguide modes with known transmitting characteristics [8,10,11].
This method needs, however, to independently consider each mode of the incident, reflected and transmitted
waves from each terminal. The summation up to a large number of modes makes the implementation, there-
fore, more complex. In addition, one PML absorber method was introduced to solve the time-dependent
Schrödinger equation [12]. It was also implemented in a 2D finite-element method with a diagonal effective
mass matrix. On the other hand, the SEM has been applied to fluid dynamics with the outflow boundary con-
ditions [13]. However, to our knowledge, such a method has never been implemented in the semiconductor
field for 3D problems.

In this paper, an efficient 3D quantum transport solver is introduced. It is based on the spectral element
method (SEM) and perfectly matched layer method to calculate the current-carrying states in devices with
arbitrary geometry. In this accurate open boundary based on the PML, the contact regions of the device
are extended into artificial PML media. The PML-modified Schrödinger equation with complex stretched
coordinates is formulated and solved by the spectral element method. In the continuous limit, the interfaces
between the PML and device region have zero reflection and outgoing waves attenuate rapidly into the PML
region before being terminated by an outer boundary. Consequently, the solution of Schrödinger equation and
thus the current in the original device region do not deviate from the correct solution in the unbounded
domain. Moreover, in this solver, the SEM is applied to achieve an error that decreases exponentially with
the increase in the polynomial order and sampling points, thus significantly reducing the CPU time and mem-
ory requirement compared to conventional finite-element and finite-difference methods [14,15]. In addition,
the effective mass is implemented as a full anisotropic mass tensor, which provides an excellent tool to study
anisotropic effects along any arbitrary orientation.

The organization of this paper is as follows. In Section 2, we introduce the problem and the PML-modified
Schrödinger equation and the SEM applied to solve this PML-modified Schrödinger equation. In Section 3,
we determine this solver’s accuracy and efficiency by waveguides and spherical quantum-dot examples. More-
over, the utility of this solver will be illustrated by multiple-terminal devices and nanotube examples.

2. Formulation

2.1. Problem statement and overview of the PML method

2.1.1. Problem statement

The objective of this work is to solve 3D Schrödinger equation with a tensor effective mass in an unbounded
domain. Although the solver and devices considered are all three-dimensional, for the sake of presentation we
use a 2D geometry to represent a cross-section of a 3D problem, as shown in Fig. 1. The entire device region is
partitioned into one (or more) semiconductor region(s) XD0

and several contact regions XD1
;XD2

; . . . ;XDK ,
where K is the number of the contacts connecting the device to the external environment. We extend each con-
tact region XDn into an artificial PML region XP n , with exactly the same material properties (such as the effec-
tive mass and potential energy) as its original contact region at the interface, except that it satisfies a PML-
modified Schrödinger equation. The outer boundaries of the semiconductor region(s) and the contact regions
are denoted as CDn (n from 0 to K) and the outer boundaries of the PML regions are denoted as CP n (n from 1



Fig. 1. The problem geometry for a semiconductor device with K contact regions truncated by the PML medium.
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to K). The interfaces between the contact regions and PML media are denoted as Cn (n from 1 to K), which are
assumed as planes without loss of generality. Again, each region of Xn is a 3D region and each boundary of Cn

is a 2D surface.
Our objective is to solve for the wave function in the device regions wn 2 C3ðXDnÞ; n ¼ 0; . . . ;K that satis-

fies the following 3D normalized Schrödinger equation with a mass tensor [14,16]
½�r � ��grþ uð~rÞ � �ð~rÞ�w ¼ 0; ð1Þ

where the differentiation operator $ and position coordinates have been normalized with ~r ¼ r=d0;
uð~rÞ ¼ UðrÞ=E1 is the normalized potential energy, U(r) = �qV(r) the potential energy, V(r) the potential,
� = E/E1, E1 ¼ �h2p2=2m0d2

0 (corresponding to the eigen energy of the ground state in a rectangular infinite quan-
tum well with well width d0), m0 the free-electron mass and ��g is defined as
��g � 1

p2
~��m�1 ¼ m0

p2

mxx mxy mxz

myx myy myz

mzx mzy mzz

2
64

3
75
�1

;

where ~��m ¼ ��m=m0 is the normalized effective-mass tensor and ��m is the effective-mass tensor. The reason to nor-
malize E by E1 is to obtain a well conditioned matrix. For simplicity and without confusion, in the rest of this
paper, we will choose d0 = 1 nm and use r to represent the normalized spatial position.

2.1.2. Overview of the PML method
We apply the scatter-field/total-field formulation [17] to solve the scattered field in the PML region and the

total field in the device region. The PML method results in zero reflection coefficients at interfaces Cn and out-
going waves that attenuate rapidly into the PML region before reaching the PML outer boundary, which will
be proved both analytically and numerically in the next sections. On all of the outer surfaces of the simulation
regions (all CDn and CP n ), the zero Dirichlet boundary conditions or zero Neumann boundary conditions will
be applied for the unknowns. On the other hand, on those interfaces between PML and device regions Cn,
incident waves exist and the total field is chosen as the unknown variable and the wave function continuity
and current continuity are applied at these interfaces.

2.2. Principle of the PML method

In this section, we will analytically prove that the reflection coefficients at interfaces Cn are zero.

2.2.1. Modified Schrödinger equation in PML

We have previously shown that the PML as an open boundary condition for Schrödinger equation is iden-
tical to that for acoustic waves in [18]. In this paper, we follow the complex coordinate stretching technique
[19,20] and apply the following PML transformation: os) esos, where es ¼ as þ i xsðsÞ

x and s = x,y, or z. In the
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above, the scaling coefficient as is usually chosen as 1, because it will transform the modified Schrödinger equa-
tion to the regular Schrödinger equation at the boundary nodes Cn;x ¼ E

�h the frequency in the solution of the
time-dependent Schrödinger equation given by
wðx; tÞ ¼ wðxÞ exp
�iEt

�h

� �
¼ wðxÞ expð�ixtÞ; ð2Þ
and xs the attenuation coefficient along s direction, that is nonzero only along the propagating direction inside
the PML region, expressed as
xsðsÞ ¼ amaxx0d
c; ð3Þ
where d = js � s0j/L and s0 is the location of the interface Cn and L is the PML thickness. By experience, we
found that L = 1.5kmin and x0 = x could achieve good enough performance and require small computational
size, where kmin is the wavelength corresponding to the maximum energy of interest. The PML material
parameters amax and c determine the wave function attenuation rate in the PML region. Their optimization
will be explained in Section 3.

Applying the above transformation into (1), we obtain
�r � ��rrwþ exeyezðu� �Þw ¼ 0 ð4Þ

as the PML-modified Schrödinger equation, where
��r �

gxx
ey ez

ex
gxy

ey ez

ey
gxz

eyez

ez

gyx
exez
ex

gyy
exez
ey

gyz
exez
ez

gzx
ey ex

ex
gzy

ey ex

ey
gzz

ey ex

ez

0
BB@

1
CCA:
Schrödinger equation in the device regions, given in (1), is a special form of (4) with xs(s) = 0 and es = 1
(s = x, y or z).

2.2.2. The solution of the modified Schrödinger equation

For a homogeneous PML medium, the modified Schrödinger equation in (4) has a plane-wave solution of
the form
w ¼ A exp½iðk � rÞ� ¼ A exp½iðexkxxþ eykyy þ ezkzzÞ�; ð5Þ

where k = (exkx,eyky,ezkz) and A a constant used to normalize the wave function. Substituting (5) into (4)
yields the dispersion relation
k � ð��r � kÞ ¼ exeyez

p2
j2; ð6Þ
where j2 = p2(� � u). For the special case of a diagonal mass tensor (6) reduces to
k2
x

mxx
þ

k2
y

myy
þ k2

z

mzz
¼ j2: ð7Þ
Eq. (7) is the equation of an ellipsoid in 3D and is satisfied by
kx ¼ j
ffiffiffiffiffiffiffi
mxx
p

sin h cos /; ð8Þ
ky ¼ j

ffiffiffiffiffiffiffi
myy
p

sin h sin /; ð9Þ
kz ¼ j

ffiffiffiffiffiffiffi
mzz
p

cos h; ð10Þ
where h is the polar angle from the z-axis in a spherical coordinate and / the azimuthal angle in the xy-plane
from the x-axis.

2.2.3. Reflection coefficient of an oblique incident wave at a PML interface

Zero reflection coefficients at the interfaces between PML and regular materials with full tensor aniso-
tropic material have been analytically proved for Maxwell’s equations [21] and widely applied in the field
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of electromagnetics [22,23]. As the properties of Maxwell’s equations and Schrödinger equation are both sec-
ond order partial differential equations, the above analytical proofs are also applicable for the solution of the
Schrödinger equation in the semiconductor field. For simplicity, here we only consider a diagonal mass tensor
in the contact and PML regions. Assume that a group of electrons with wave function w is obliquely incident
on the interface at z = 0, as shown in Fig. 2. According to the solution of the modified Schrödinger equation,
the incident waves wi, the reflected waves wr and the transmitted waves wt can be expressed as
wi ¼ A expðiki � rÞ ¼ A exp½iðe1xk1xxþ e1yk1yy þ e1zk1zzÞ�;
wr ¼ RA expðikr � rÞ ¼ RA exp½iðe1xk1xxþ e1yk1yy � e1zk1zzÞ�;
wt ¼ TA expðikt � rÞ ¼ TA exp½iðe2xk2xxþ e2yk2yy þ e2zk2zzÞ�;
where krz = �k1z and the subscripts 1 and 2 represent regions 1 and 2, respectively.
The continuity of the wave function at the interface z = 0 requires that
1þ R ¼ T ; ð11Þ

where R is the reflection coefficient and T is the transmission coefficient.

The continuity of the current at the interface at z = 0 requires the continuity of n̂ � ð��rrwÞ, i.e.
exeygzz

ez

ow
oz , which

yields that
e1xe1yk1z

m1zz
ð1� RÞ ¼ e2xe2yk2z

m2zz
T : ð12Þ
Thus, from (11) and (12), we can write that
R ¼ e1xe1yk1zm2zz � e2xe2yk2zm1zz

e1xe1yk1zm2zz þ e2xe2yk2zm1zz
: ð13Þ
2.2.4. Zero reflection at a perfectly matched interface

The phase matching condition requires that e1xk1x = e2xk2x and e1yk1y = e2yk2y. Substituting these condi-
tions into (8) and (9), we obtain that
e1xj1

ffiffiffiffiffiffiffiffiffi
m1xx
p

sin h1 cos /1 ¼ e2xj2

ffiffiffiffiffiffiffiffiffi
m2xx
p

sin h2 cos /2;

e1yj1
ffiffiffiffiffiffiffiffiffi
m1yy
p

sin h1 sin /1 ¼ e2yj2
ffiffiffiffiffiffiffiffiffi
m2yy
p

sin h2 sin /2:
If we choose m1xx ¼ m2xx; m1yy ¼ m2yy ; m1zz ¼ m2zz; e1x ¼ e2x; e1y ¼ e2y ; V 1 ¼ V 2 (i.e. j1 = j2), we can then ob-
tain that h1 = h2 and /1 = /2 and therefore k1z = k2z. Thus, from (13), the reflection coefficient R = 0 is always
satisfied for any angle of incidence.
Fig. 2. Arbitrary angle electron incident on the plane z = 0.
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2.3. PML implementation in the spectral element method

In order to solve for the wave function using the spectral element method, we use the weak form of (4). By
multiplying both sides of (4) with a testing function Wi and integrating by parts over the computational
domain, the weak form of (4) can be written as
Z

X
½ð��rrwÞ � rWi þ qwWi�dv ¼

I
oX

n � ð��rrwÞWi ds; ð14Þ
where q = exeyez(u � �). Within the framework of the spectral element method introduced previously [14,15],
both the testing and basis functions are chosen as Wi, which we have selected the Gauss–Lobatto–Legendre
(GLL) polynomials defined on a cubic reference element. The physical domain is divided into non-overlapping
curved hexahedron elements conforming to the problem geometry; each curved hexahedron element is
mapped into the cubic reference element. The unknown wave function is expanded in terms of the basis func-
tions as w ¼

PN
j¼1ujWjð~rÞ, where {uj} are the values of the unknown wave functions at the SEM nodal points

and N is the number of the total grid points in the curved hexahedron elements. Next, the SEM is applied to
the device and PML regions, respectively.

2.3.1. System equations in the device region

The weak form equation for the device region (including all contacts) can be obtained simply from (14) with
��r ¼ ��g and ex = ey = ez = 1. To facilitate the interface between the PML and the contact regions within the
total-field/scattered-field formulation, we also expand the normal flux term n � ð��grwÞ in terms of the basis
functions at this interface. Assuming that there are Nb SEM boundary nodes at the interfaces between the
PML and the contacts, we expand the normal flux term in the contacts at the PML interface as
n � ð��grwÞ ¼

PNb
j¼1cjWjð~rÞ, where cj denotes the value of the normal flux at the jth nodal point. The system

equation in the device region can be written as
XKD

e¼1

XND

j¼1

Z 1

�1

Z 1

�1

Z 1

�1

ðrWiÞ � J�T
e

��gJ�1
e ðrWjÞujjJejdndgdfþ

XKD

e¼1

XND

j¼1

Z 1

�1

Z 1

�1

Z 1

�1

ðu� �ÞWiWjujjJejdndgdf

¼
XKb

b¼1

XNb

j¼1

Z 1

�1

Z 1

�1

WiWjcjjJbjdudvþ
XKb

b¼1

XND�Nb

j¼1

Z 1

�1

Z 1

�1

WiWjcjjJbjdudv; ð15Þ
where {uj} are the unknown values of the wave functions at the nodal points defined on curved hexahedron
elements in the device region, KD the total number of volume hexahedron elements partitioning the whole de-
vice region represented by ND unknown variables, Kb the total number of surface elements on the interfaces
{Cn} represented by Nb unknown variables. Again, each of the curved volume hexahedron elements is mapped
into a cubic reference element and Je and Jb are the Jacobian matrices in the volume element and in the bound-
ary surface element, respectively and jJej and jJbj mean their corresponding determinants.

After applying the zero Dirichlet boundary conditions or zero Neumann boundary conditions on all CDn in
Fig. 1, the last term in (15) becomes zero and only the first term in the right-hand side of (15) remains and is
denoted as S1.

2.3.2. System equations in the PML region

In the PML regions, we use the scattered field as the unknown variable in order to avoid the attenuation of
the incident field from outside the device. Similar to the formulation for the device region, by considering the
zero Dirichlet boundary condition or zero Neumann boundary condition for the scattered field at the outer
surfaces of the PML regions, then we can obtain the system equation for the PML regions as
XKP

e¼1

XNP

j¼1

Z 1

�1

Z 1

�1

Z 1

�1

ðrWiÞ � J�T
e

��rJ�1
e ðrWjÞus

jjJejdndgdfþ
XKP

e¼1

XNP

j¼1

Z 1

�1

Z 1

�1

Z 1

�1

qWiWju
s
jjJejdndgdf ¼ S2;

ð16Þ
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where us
j is the scattered wave function at the jth node and S2 is equal to
S2 � �
XKb

b¼1

XNb

j¼1

Z 1

�1

Z 1

�1

cs
jWiWjjJbjdudv ¼ �

XKb

b¼1

XNb

j¼1

Z 1

�1

Z 1

�1

WiWjðcj � ci
jÞjJbjdudv; ð17Þ
and cs
j and ci

j are the values of the normal flux at the jth node corresponding to the scattered and incident wave
functions, respectively. The relation cs

j ¼ cj � ci
j is used in (17) since at the interfaces between the PML and

contacts we have n̂ � ð��grwÞ ¼ n̂ � ð��rrwÞ. The definitions of KP, NP, Kb and Nb in the PML regions are similar
to those in the device regions. The minus signs in those terms on the right-hand of (17) result from the normal
directions of the interface for the PML regions opposite to the normal directions of the device regions.

Adding S1 and S2 yields to the source term S at the internal interfaces between the PML and device regions
S ¼ S1 þ S2 ¼
XKb

b¼1

XNb

j¼1

Z 1

�1

Z 1

�1

ci
jWiWjjJbjdudv;
where ci
j is n̂ � ð��grwiÞ evaluated at the jth nodal point.

2.3.3. System equation in a matrix form

Now we are in a position to combine the system equations for the device and PML regions by considering
the boundary conditions at the PML-device interfaces. To this end, we separate the unknowns in the interior
nodes and those at the PML-device interfaces. The system equation in the device regions can be rewritten in a
matrix form as
A11 A12

A21 A22

� �
u

ub

� �
¼

0

S1

� �
; ð18Þ
where u and ub represent the wave functions on the inner and boundary nodal points in the device regions.
Similarly, the system equation in the PML region can be rewritten in a matrix form as
B11 B12

B21 B22

� �
us

b

us

� �
¼

S2

0

� �
; ð19Þ
where us and us
b represent the scattered wave functions on the inner and boundary nodal points in the PML

regions.
With the boundary conditions at the interface Cn: ws = w � wi, (19) can be rewritten as
B11 B12

B21 B22

� �
ub

us

� �
¼

S2 þ B11ui
b

B21ui
b

" #
; ð20Þ
Combination of (18) and (20) results to the global matrix equation
A11 A12 0

A21 A22 þ B11 B12

0 B21 B22

2
64

3
75

u

ub

us

2
64

3
75 ¼

0

S þ B11ui
b

B21ui
b

2
64

3
75: ð21Þ
The specific expressions of the above matrix elements are given in the Appendix. This system equation is
solved by the conjugate-gradient method to obtain the unknown values of the wave function at nodal points.

3. Numerical results and discussions

Below we first use numerical results of a waveguide and a spherical quantum dot to show the validity and
the exponential convergence of the SEM solver. We then apply this solver to a multiple-terminal device and a
carbon nanotube.

3.1. A waveguide example

First, we consider a rectangular waveguide with an electron wave propagating from a PML region into a
device region and exiting via another PML region. The analytical solution available for this problem will be
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used to test the validity of the PML method and the convergence of the SEM method and to optimize the
PML parameters.

The rectangular waveguide shown schematically in Fig. 3 is divided into three SEM elements, each having a
size of 8 nm · 8 nm · 8 nm. The incident wave ui = sin(kyy)sin(kzz)exp(ikxx) with its wavelength k = 10 nm
propagates along the +x direction from the left PML box, through the device region, and then transmits into
a right PML box. The zero Dirichlet boundary conditions have been applied on all the outer surfaces.

3.1.1. Comparison with the analytical solution

We first apply a quadratic PML profile (i.e. c = 2) with amax = 6.5 in (3). The wave function along the x

direction in the device region is plotted in Fig. 4. The L2 error for all nodes in the device region at the sampling
density SD = 10 PPWs (points per wavelength) reaches 0.02%, which is within the acceptable error range.

3.1.2. Optimization of PML profile parameters and the SEM convergence

We use this example to optimize the PML profile parameters c and amax and to test the error convergence of
the SEM.

We choose c = 0, 1, 2 and 3 and apply different values of amax to compare the error performance for
SD = 14 PPWs, as shown in Fig. 5. This error is the difference between the calculated wave function and
the analytical solution within the central device region. It is observed that the curve with c = 0 and amax = 4.0
has the minimum error (L2 error = 3.16 · 10�8 = �150 dB).

From the above study, we obtain the optimal value of amax for different profiles of c that give the minimum
error: amax = 4.0, 6.5, 8.3 and 11.0 for c = 0 to 3, respectively. Using these optimal values of amax, we now test
the error convergence with the increasing sampling density for c = 0 to 3, as shown in Fig. 6. The error
decreases exponentially with the increase of the sampling density for all these profiles. Moreover, as expected,
the smallest reachable error increases with the increase of c.

Overall, the PML profile with c = 0 and amax = 4.0 has the minimum error in the above waveguide device
simulations. The value c = 0 yields the smallest error because it does not increase the polynomial order of the
Device PMLPML

Fig. 3. The geometry for three-element PML model.
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region.



0 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

α max

E
rr

or

c=0
c=1
c=2
c=3

Fig. 5. The error convergence with the change of amax for c = 0 to c = 3 in the PML region.

4 6 8 10 12 14
10

−8

10
−6

10
−4

10
−2

10
0

Sampling Density (PPW)

E
rr

or

c=0
c=1
c=2
c=3

Fig. 6. The error convergence with the increase of the sampling density.

C. Cheng et al. / Journal of Computational Physics 227 (2007) 455–471 463
integrand of Bij in (A.1). The Gauss–Lobatto–Legendre quadrature order to evaluate this integrand is, there-
fore, not required to be increased in the SEM. On the other hand, amax = 4.0 yields the smallest error because
an increase in amax will speed up the decay rate inside the PML region, while too large values of amax will intro-
duce reflection because of the significant difference between the device material and PML material. This opti-
mal value of amax may be problem-dependent, but the error achieved by this choice is in general much smaller
than that required by most engineering applications. In the remaining examples, the values of c = 0 and
amax = 4.0 will be used.

3.2. Plane-wave incidence on a spherical quantum dot

Next, to test the SEM solver on curved structures, we simulate a spherical quantum dot with plane-wave
incidence.

The incident plane-wave ui = exp(ikzz) propagates along the +z direction from a high potential energy
region (region 2, V2 = 0.014 V) and reaches a low potential energy quantum dot sphere (region 1,
V1 = 0 V, radius r = 8 nm). Region 2 is unbounded and thus should not produce reflections. We truncated
region 2 with a cube (24 nm · 24 nm · 24 nm) and applied a PML region with 8 nm thick outside the cube.
The zero Neumann boundary conditions have been applied on all outer surfaces. The energy for the incident
wave is E = 0.166 eV and the effective mass is m = m0. The geometry is shown in Fig. 7. The sphere being
modeled by a cubic element at the center and six curved hexahedron elements conforming to the spherical sur-
face. The sampling densities are approximately even in x, y and z directions.
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Fig. 7. The geometry for a spherical quantum dot with plane-wave incidence.
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The differences of the real (a) and imaginary (b) parts of the wave function between numerical results and
analytical solutions at central y surface are shown in Fig. 8. In this example, basis order N = 8, i.e. SD = 9
PPW. We found that the error is within acceptable range.

The error of the wave function difference between the analytical solution and numerical results in the device
region is shown in Fig. 9. The error decreases exponentially with the increase of basis function order N. When
N = 8 (i.e. SD = 8 PPWs), the error reaches 0.047%.

The results reported in the above subsections show that the PML method has been applied effectively, as the
reflection coefficient has been theoretically proved to be zero and numerical results are within an acceptable
error range. In addition, we have implemented the SEM in the waveguide and quantum-dot examples, yielding
errors that decrease exponentially with the increase of the sampling density SD. In the next sections, we will
utilize this solver to calculate the electron concentration and transmission coefficient in semiconductor devices.

3.3. A multiple-terminal device with quantum dots

In this example, we will simulate the electron concentration distribution in a multiple-terminal device that
includes several quantum dots. There are five contacts connecting the device to the external environment,
which can be treated as five terminals with each having an incident and a reflected wave. This example can
be easily transformed into a quantum coupler, a quantum dot, or a MOSFET.
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Fig. 8. The differences of the real (a) and imaginary (b) parts of the wave function at central y surface between numerical results and
analytical solutions.
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3.3.1. Geometry

The geometry of the device is shown in Fig. 10. Five cubic contact terminals (regions 1, 4, 5, 6 and 7, with
V1 = V4 = V6 = V7 = �5.5 V, V5 = �5.9 V) carrying waveguide modes wi = cos(kaa)cos(kbb)exp(�ikcc) with
energy E = 0.38 eV propagate into a semiconductor region (region 2, V2 = 0.38 V, 72 nm · 24 nm · 24 nm)
with three inner quantum-dot spheres (region 3, V3 = �0.153 V, r = 5 nm), where a and b are the transverse
variables and c the longitudinal variable in the rectangular waveguides. These five contact terminals are also
the exit terminals of the device. All terminals have the same size of 8 nm · 8 nm · 2 nm, where 8 nm is the
transverse direction and 2 nm is the propagating direction. The Fermi level in regions 1 is chosen to be zero.
Each contact region has been extended into a 2 nm thick PML region. The zero Neumann boundary condi-
tions have been applied on all outer surfaces. The electron effective mass for all materials are assumed to be
me = 0.5m0. This example can be treated with terminal 1 as the gate region, terminals 4 and 5 as the source
and drain regions and terminals 6 and 7 as the bulk region. It is easy to change the bias applied at each ter-
minal. Here, we assume that the potential distribution is known and is constant in each region, while the real
potential distribution will be determined from a Poisson solver, which will be investigated in a forthcoming
paper.
3.3.2. Electron concentration distribution

The electron concentration distribution jwj2 along the central z surface is shown in Fig. 11. As can be seen,
the electrons are accumulated in the quantum-dot low-energy regions. Moreover, as the geometry of the device
and the bias applied on this device is symmetric along x = 0, the electron distribution is also symmetric along
x = 0, as expected.

This multiple-terminal device example has proved the solver’s ability to calculate the wave function and
electron concentration distribution in the quantum coupler, quantum dot and MOSFET devices.
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Fig. 10. The geometry for a device with three inner quantum dots, five incident terminals and five exit terminals.
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3.4. A carbon nanotube

Finally, we will simulate the wave function in a carbon nanotube. We will compare our results with the
transmission coefficient reported in [24].

We will only simulate the nanotube, source and drain regions in the geometry of [24], as shown in Fig. 12,
i.e. Rt = 0.63 nm, Lt = 20 nm, work function Umetal = 4.5 V, vmetal = 10.0 eV, vCN = 4.2 eV. A bias voltage
VDS = 0.4 V is applied between the drain and source contacts. The potential energy was obtained from
Fig. 4b in [24].

3.4.1. Transmission coefficients

Based on the geometry in Fig. 12, we simulated the transmission coefficients with two different incident
electron waves: (a) a constant wave front, i.e. the first circular waveguide mode /i ¼ AJ 0ðx001q=aÞ expðikzÞ
(where Jm(x) is the Bessel function of the mth order, x0mn ¼ 0 is the nth zero of the derivative of Jm(x)
and A is the amplitude of the wave function calculated from Landauer’s equation [24]). This example is used
to compare the 1D transmission coefficient with the result reported in [24], (b) the second circular waveguide

mode /i ¼ AJ 1ðx011q=aÞ expðikzzÞ; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ½x011=a�2

q
. This example is used to calculate the 3D transmission

coefficient. These two examples are respectively denoted as J01 and J11. In the J11 example, the incident
wave does not propagate in the nanotube with Rt = 0.63 nm, which leads to negligible transmission coef-
ficients. In order to compare the 1D and 3D transmission coefficients, in the J11 mode, we have chosen the
radius Rt = 4.6 nm whose propagating probability is large enough. To confirm the 1D transmission coeffi-
cients results, we also simulated a third example with a constant wave front (i.e. a square waveguide mode

/i = Acos(mpx/a)cos(npy/b)exp(ikzz), denoted as ‘‘S00’’ for m = n = 0; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2p2=a2 � n2p2=b2

q
) on a

square cylinder nanotube with the same cross section surface area as the case with Rt = 0.63 nm. All three
incident waves satisfy the Neumann boundary conditions at the outer surface of the cylinders. The example
we consider here only has a source injection of electrons, as the opposite direction of the injection is anal-
ogous. In order to obtain the same result as [24], we choose the effective mass for the carbon nanotube as
mCN = 0.0615m0. We calculated the transmission coefficients from both 1D and 3D models for the above
three examples. The 1D transmission coefficient is defined as [24]
Source Drain

z=0 =Lt

Rt

Carbon Nanotube

z

Fig. 12. The geometry for a coaxial carbon nanotube FET device.
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T 1D ¼
m�SkDjCj2

m�DkSjAj2
; ð22Þ
where kD and kS are the wave numbers along the propagation z direction in the drain and source contacts,
respectively, m�D and m�S the electron effective mass in the drain and source contacts, respectively and C and
A the amplitudes of the wave functions at the drain and source contacts, respectively [24]. The 3D transmis-
sion coefficient is defined in terms of the current density ratio between the outermost interfaces at the drain
and source contacts as
T 3D ¼
J D

J S

¼
R

oX
1
2i
ðw�D ��m�1

D � rwD � wD
��m�1

D � rw�DÞ � dsR
oX

1
2i
ðw�S ��m�1

S � rwS � wS
��m�1

S � rw�SÞ � ds
; ð23Þ
where JD and wD are the current density and transmitted wave at the drain-contact exit interface, respectively,
JS and wS the current density and incident wave at the source contact interface, respectively, ��mD and ��mS the
electron effective mass tensors in the drain and source contacts, respectively.

The transmission coefficients obtained in this work and those reported in [24] (denoted as ‘‘JCPP’’) are
compared in Fig. 13. The dotted line represents the T3D value using a constant incident wave (S00 mode) pass-
ing through a square cylinder. The dash–dotted line represents the T3D value using a constant incident wave
(J01 mode, denoted as ‘‘CJ01’’) passing through the circular cylinder. Our calculated 1D transmission coeffi-
cients values T1D also agree with the results of John et al. [24].

As can be seen in Fig. 13, when we use a constant incident wave, (i.e. J01 and S00 modes, same as in [24]), the
magnitudes of the T3D, the constructive and the destructive energies are almost the same for the circular and
the square nanotubes for all energies and also agree well with the results reported in [24]. The transmission
coefficient results for the J11 incident wave on the circular cylinder (denoted as ‘‘CJ11’’) with Rt = 4.6 nm
shown in Fig. 13 have a little shift in energy from the J01 and S00 fundamental modes. This shift is due to
the wave number kz for the J11 mode being smaller than kz = k for the J01 and S00 modes. Furthermore, as
can be seen in Fig. 13, small energy level ranges (E 2 ½�0:2;�0:07� eV) lead to almost zero propagation prob-
ability, because kz in this energy range has an imaginary value and the incident mode is an evanescent one.
This result is based on the enlarged radius Rt = 4.6 nm for obtaining real value of kz for energies larger than
�0.07 eV.

3.4.2. Electron distribution at different interference energies

From Fig. 13, we choose a constructive interference at energy E = 0.1085 eV, a destructive energy at
E = 0.1712 eV, an intermediate one at energy E = 0.14 eV based on the J01 example and plot the normalized
electron concentration distribution along the central axial z direction of the coaxial CNFET in Fig. 14. As can
be seen, the peak of the electron concentration for E = 0.1085 eV is largest among the three energies, which
implies its constructive interference property. Moreover, the peak of the electron concentration for the
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Fig. 13. The transmission coefficient comparison for a CNFET with different input energies and different incident waves.
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destructive interference at energy E = 0.1712 eV is smallest among the three energies. Furthermore, at
E = 0.14 eV, an intermediate electron concentration is obtained in the nanotube.

3.4.3. Effects of the mass tensor anisotropy

Finally, the solver is used to model the effects of the mass tensor by comparing the transmission coefficient
corresponding to a scalar mass, a diagonal mass tensor and a full mass tensor for the above example. The
incident wave is the fundamental J01 mode along a circular cylinder with a radius Rt = 0.63 nm (same as above
examples) for three different effective masses inside the CNFET region. In the first example, mSM = 0.0615m0

is the same scalar mass as in the above example. In the second example, the diagonal mass tensor
Fig. 15
versus
��mDMT ¼
0:0523 0 0

0 0:0523 0

0 0 0:0851

2
64

3
75m0
has the same determinant as that of the scalar mass, i.e. j��mDMTj ¼ 0:06153m3
0, but the transverse component

has a 15% perturbation.
In the third example, the full mass tensor
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is obtained by rotating the principal axis of the diagonal mass tensor by 30� along the z axis then by 45� along
the y axis. It also has the same determinant as the scalar mass.

Meanwhile, the effective mass inside the lead region is still chosen to be the same as in the previous example,
i.e. a scalar mass with value mlead = 0.0615m0.

The values of the transmission coefficients T3D obtained for the three mass tensors are compared in Fig. 15.
It is observed that the transmission coefficient peaks for the diagonal mass tensor have large negative energy
shifts from the corresponding ones for the scalar mass. These shifts are caused by the increased kz value (thus
decreased effective wavelength in the z direction) because of the increased mzz, as can be seen in Eq. (7). Note
that the decreased values of mxx = myy have much less effect for this fundamental mode. For the case of a full
mass tensor, since the principal axis has been rotated, this anisotropy effect is reduced because of the averaging
effect caused by rotation, thus the negative shifts in the transmission coefficient are less than the case of the
diagonal mass tensor.
4. Conclusions

We have demonstrated both analytically and numerically that the reflection coefficients at the interfaces
between device regions and perfectly matched layers can be made smaller than �100 dB when we appropriately
choose the parameters of the perfectly matched layers in the spectral element method. Moreover, we have
shown that this solver can achieve exponential convergence, reaching 0.1% accuracy when the sampling density
exceeds eight points per wavelength, enabling us to significantly reduce the computational time and memory
from conventional finite-element and finite-difference methods [14,16]. Although we focused on a Schrödinger
solver in this article, it is natural for us to extend this solver to the self-consistent Schrödinger–Poisson system in
3D in our future work, as has been done in the 1D case [14]. Such a self-consistent solver has been done in the
first author’s thesis and will be reported in the near future. In our self-consistent solver, Schrödinger and Pois-
son equations are solved iteratively by a nonlinear solver. Within each iteration of the nonlinear solution, both
Schrödinger and Poisson equations are linear and thus can be solved by the SEM [25].
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Appendix A. Expression of each term in the global matrix equation

The global matrix equation is expressed in (21) as:
A11 A12 0

A21 A22 þ B11 B12

0 B21 B22

2
64

3
75

u

ub

us

2
64

3
75 ¼

0

S þ B11ui
b

B21ui
b

2
64

3
75:
The expressions of the corresponding elemental matrices Ae
ij;B

e
ij and Se

i are as follows:
Ae
ij ¼

Z 1

�1

Z 1

�1

Z 1

�1

ðrWiÞ � J�T
e

��gJ�1
e ðrWjÞjJejdndgdfþ

Z 1

�1

Z 1

�1

Z 1

�1

ðu� �ÞWiWjjJejdndgdf; ðA:1Þ
where i; j ¼ 1; 2; . . . ;ND and ND is the number of nodes in each element in the device region,
Be
ij ¼

Z 1

�1

Z 1

�1

Z 1

�1

ðrWiÞ � J�T
e

��rJ�1
e ðrWjÞjJejdndgdfþ

Z 1

�1

Z 1

�1

Z 1

�1

exeyezðu� �ÞWiWjjJejdndgdf; ðA:2Þ
where i; j ¼ 1; 2; . . . ;NP and NP is the number of nodes in each PML element and
Se
i ¼

XNb

j¼1

Z 1

�1

Z 1

�1

ci
jWiWjjJbjdudv; ðA:3Þ
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where i ¼ 1; 2; . . . ;Nb and Nb is the number of nodes on each boundary element at the interfaces between the
PML and contacts.

For the global matrices, the range of i and j in each term of the above equation is as follows:
ðA11Þij : fi; jg ¼ 1; . . . ;N Dt � Nbt ;

ðA12Þij : i ¼ 1; . . . ;N Dt � Nbt ; j ¼ NDt � Nbt þ 1; . . . ;N Dt ;

ðA21Þij : i ¼ N Dt � Nbt þ 1; . . . ;N Dt ; j ¼ 1; . . . ;NDt � N bt ;

ðA22Þij : fi; jg ¼ NDt � Nbt þ 1; . . . ;N Dt ;

ðB11Þij : fi; jg ¼ 1; . . . ;N bt ;

ðB12Þij : i ¼ 1; . . . ;N bt ; j ¼ Nbt þ 1; . . . ;N P t ;

ðB21Þij : i ¼ N bt þ 1; . . . ;NP t ; j ¼ 1; . . . ;N bt ;

ðB22Þij : fi; jg ¼ Nbt þ 1; . . . ;NP t ;

Si : i ¼ 1; . . . ;N bt ;
where N Dt is the total nodes in the device regions, NP t is the total nodes in the PML regions and Nbt is the total
boundary nodes at the interfaces Cn.
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